
Unification of Active and Passive Objects in an Object-Oriented Operating System

Kenichi Murata✝,‡, R. Nigel Horspool‡, Eric G. Manning‡, Yasuhiko Yokote* , Mario Tokoro✝,*

✝ Department of Computer Science Keio University
3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223 JAPAN

‡ Department of Computer Science, University of Victoria
Victoria, British Columbia V8W 3P6 CANADA

* Sony Computer Science Laboratory Inc.
3-14-13 Higashi-gotanda, Shinagawa-ku, Tokyo 141 JAPAN

Abstract
This paper proposes the unification of active and

passive objects in object-oriented operating systems.
With such a unification, programmers can concentrate
on programming an algorithm without having to consider
how objects are used and executed. Also, all objects can
be migrated in a distributed system. To achieve this
unification, meta level scheduling control is introduced,
and the scheduling policy is determined at object
creation time. We named this system Cognac. In Cognac,
the execution domain of an object is an object cluster, in
which some metaobjects control the execution of member
objects at run-time. The scheduler metaobject manages
method invocation and the status of its member objects.
Since all objects’ attributes are managed by metaobjects,
mutual exclusion is guaranteed.

1 Intr oduction

The object-oriented paradigm has become popular
and it is now widely accepted as a good tool for
constructing large, complex systems, because of its
excellent modularity. It is also helpful in building
concurrent systems.

Several concurrent object-oriented programming
languages have been designed and implemented, based
on the concurrent object model[1], where each object is
an active entity. From the viewpoint of the operating
system, each object is a process, with its own single
thread of control.

Apertos[2] is an object-oriented operating system
which supports concurrent objects and which is itself
composed of concurrent objects. At first, in programming
for Apertos, C++ was used as the primary language.
However, we needed to write a lot of stub code to
represent the active objects. In the latest version of
Apertos, we use MC++[3] for programming an Apertos
object, where we can declare an active/passive attribute
in the C++ class definition. In MC++, internal data
structures are also modeled as objects, where the objects
are passive entities and are only accessed in a single
active object. However, the distinction between active
and passive objects is confusing to programmers, and it
makes programming more difficult.

From our experience with programming using
MC++, we felt that there was a great need for system
support where all objects are viewed as equal entities and
have equal ability to migrate amongclusters to find a
suitable execution environment. To achieve unification of
active and passive objects, we introduced run-time object
scheduling suitable for this set of objects, and plug-in
intermediate method code. We named this system

Cognac1.

2 Concurrency in Object Models

2.1 Object/Thread Model

To incorporate concurrent constructs in a

1. The name has no acronymic significance.

conventional object-oriented system, the notion of
execution threads was introduced in some systems, e.g.
Clouds[4]. A model in which concurrency is introduced
in this way is called anobject / thread model.

In this model, objects are passive entities, and each
thread can execute object method code at any time. Good
response times and good performance are expected.
However, since threads execute independently, a mutual
exclusion problem might occur when more than two
threads simultaneously execute the same method. To
avoid this problem, a locking mechanism such as a
semaphore must be used to control access to critical
sections in a method.

This model has the advantage of familiarity, because
a conventional programming language is used as the base
language. However, there are two great disadvantages in
programming. First, since the original base language does
not have ability to control concurrent execution, a new
external (unprogrammable) entity that represents a thread
must be introduced. Second, the locking mechanism
makes programming difficult, especially when
inheritance is used. For example, when Class_B is
defined in Figure 1, Method_1 in Class_A, which was
previously programmed and is inherited by Class_B,
must be modified to use locking for variable x.

2.2 Active Object Model

The active object model views an object as an active
entity which communicates with other objects by sending
messages. In this model, an object is composed from

// programmed first
class Class_A {
private:

int x;
public:

void Method_1 () { x = 0; }
// must be modified when
// subclass Class_B is added

};

// programmed later
class Class_B : public Class_A {
public:

void Method_2 () {
Lock (x);
x = 100;
// conflict with Class_A::Method_1
Unlock (x);

}
};

 Figure 1: Mutual Exclusion Problem in Inher-
itance

instance data, a communication module, an incoming
message queue and its own execution context. Each
message arriving at the object is, at first, spooled in the
message queue by the communication module. Each
object also has the ability to select a message from the
queue to be executed next. If the object decides not to
handle a message at this moment, the message can be
pushed back into the message queue. Since each active
object communicates with others only by sending
messages, they can run concurrently.

An active object is calledatomic if there is exactly
one thread of control. In this case, since execution
context is unique for each object, messages are processed
sequentially, and the programmer of the object need not
consider mutual exclusion. In this paper, all active
objects are assumed to be atomic.

Some programming languages have been
implemented using this model, as seen in [1]. Most actor-
base languages, like ABCL/1[1], AL-1/D[5], manage
internal instance data as primitive data which is not
viewed as an object, and is accessed by special
predefined operations. If the object is fine-grained, there
is much message passing among objects, and it causes
much context switching. This leads to a large
performance penalty in a big system.

To manage the granularity of the objects, internal
instance data can be also defined as an object, called a
passive object. There are two different ways to introduce
passive objects: (1) using another language to describe
passive objects, and (2) defining passive objects using the
same language in which the active object is described.

MC++ uses passive objects in the latter manner to
reduce context switching among active objects. However,
it is the programmer’s responsibility to use a passive
object only inside a single active object to avoid
execution conflicts. The programmer therefore always
has to consider the choice between active and passive for
each object. This means that messages exchanged
between active objects cannot contain a pointer to an
internal passive object. As it is difficult to share passive
objects correctly, programming is difficult.

3 Unification of Active and Passive Object

The programming task becomes much simpler if the
distinction between active and passive objects can be
eliminated.

A necessary but not sufficient condition for an object
O to be passive is, that it is used by only one active
object. This is, if O is shared among two or more active
objects, it must be active (to deal with possible mutual
exclusion problems). And, this condition is necessary but
not sufficient because, for example, a stack object must

reject a pop request when it has no data on the stack. In
this situation, such an object should be explicitly placed
by the programmer in an object cluster which supports
the active object model. Also, if an object is constant (i.e.
all internal data is stored only at creation time, and it is
never modified after creation), the object can be passive.
However, it is difficult to determine this property at
compile time. Therefore, we determine it at run-time.

Using this unification, the distinction between active
and passive objects is no longer necessary. Also, objects
can be modeled as mobile entities, so that each object can
migrate between address spaces.

4 Cognac Architecture

4.1 Object Cluster and Metaobjects

To achieve the unification described in the previous
section, we separate the concept of execution domain
from object programming, and provide a way to execute
a method as a passive object. Also, we introduce dynamic
object scheduling control based on object status. This
provides a mechanism of mutual exclusion. Our
execution domain is called an object cluster. In an object
cluster, member objects share the same address space and
the same scheduling policy.

The object cluster includes some meta objects. These
are: a scheduler metaobject, a message queue metaobject,
and object status metaobjects. The scheduler metaobject
determines the execution scheduling of member objects.
the message queue metaobject is used to spool the
incoming messages from outside the cluster; and the
object status metaobjects hold the execution status of
each member object in the cluster.

 Membership in a cluster is initially determined from
static information provided by the Cognac compiler.
Membership can be dynamically changed by migrating
an object to another cluster to reduce communication

overhead. Dynamic object migration is managed by the
object monitor metaobject.

These metaobjects are themselves supported by meta-
meta objects which provide system wide resource
management such as memory management and message
handling between object clusters.

4.2 Interface to meta-meta system

The meta-meta system supports the execution of
metaobjects, such as inter-meta space communication,
memory management and naming management. Each
object cluster has an interface to the meta-meta system.
For example, the Invoke interface is provided to allow
invocation of an object from outside of the cluster. This
interface depends on the kind of model which the cluster
supports.

4.3 Meta interface compatibility

To support object migration across object clusters,
we introduce a notion of compatibility of interface to
metaobjects. In Cognac, the class of an object cluster is
defined in a hierarchical class system. A subclass object
cluster supports operations which are defined in its super-
class object cluster, so that objects can move to the
subclass object cluster at any time. We call such
compatibility meta interface compatibility, because the
interface of the operation is compatible but the semantics
of the operation might be different.

5 Implementation

A prototype version of Cognac has been
implemented on top of UNIX. Each object cluster is
implemented as a UNIX process, which contains the code
for the necessary metaobjects. Since the meta-meta
system is the UNIX kernel and the semantics of message

Possibly passive Must be active

Some Non-shared objects may be passive Shared object must be active

 Figure 2: Active/Passive Object Determination

Object Cluster

Active
Object

Active
Object

Active
Object

Active
Object

sending between object clusters is determined by UNIX
inter-process communication, all metaobjects must share
the same meta-meta system. We now plan to implement
Cognac on Apertos, which provides a hierarchical meta-
space architecture, so that metaobjects can be
programmed on top of different meta-meta spaces.

6 Related work

Apertos has a hierarchal meta architecture. A set of
metaobjects is called a meta space and the meta space is
managed by a special object named areflector in
Apertos. Since the Cognac design is based on Apertos,
the reflector which defines the interface to the meta space
for objects looks similar to the object cluster in Cognac.
However, all Apertos objects are active, so that there is
no direct invocation of objects. Also, reflectors manage
not only object scheduling, but also the object’s
environment, including memory management, message
delivering, and so on. In this sense, an Cognac object
cluster is a subset of an Apertos reflector. We are now
trying to merge Cognac into Apertos.

7 Future work

Our current goals are:
1. To implement Cognac on Apertos.
2. To establish the formal semantics of the unified

object model.
3. To achieve reflection by dynamic modification

of metaobject definition.
4. To implement an object migration support.

8 Conclusion

In this paper, we describe the unification of active
and passive objects in object-oriented operating systems.
This unification simplifies programming and simplifies
the migration of objects between execution
environments. A meta-level scheduling strategy is used
to achieve unification. The scheduling policy is
determined at run-time.

Acknowledgement

We would like to thank Mantis Cheng and Robert
Bryce for helpful discussions.

References

[1] Akinori Yonezawa and Mario Tokoro, editors.Object-
Oriented Concurrent Programming. The MIT Press, 1987.
[2] Yasuhiko Yokote.Kernel Structuring for Object-Oriented
Operating Systems: The Apertos Approach, In Proceedings of
the International Symposium on Object Technologies for
Advanced Software (ISOTAS), 1993.
[3] Takao Tenma.MC++ Language Manual, In Apertos
Manuals. 1994
[4] Partha Dasgupta, Richard J. LeBlanc, Jr., Mustaque
Ahamad, and Umakishore Ramachandran.The Clouds
Distributed Operating System. In Computer. pp34-44, Vol. 24,
No. 11, November 1991.
[5] Hideaki Okamura, Yutaka Ishikawa, and Mario Tokoro.AL-
1/D: A Distributed Programming System with MultiModel
Reflection Framework. In Proceedings of the International
Workshop on New Models for Software Architecture’92
Reflection and Meta-level Architecutre, November, 1992.

Object

Object Cluster

Metaobject

Meta-Meta System

 Figure 3: Structure of Cognac Object Clusters

Meta Interface

Meta-Meta System

Object Cluster
for Metaobjects

